Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 253(5): 114, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934247

RESUMO

MAIN CONCLUSION: Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.


Assuntos
Vitis , Antocianinas , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo
2.
Planta ; 253(4): 84, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33788027

RESUMO

MAIN CONCLUSION: White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp. Here, we investigated the teinturier cvs. 'Gamay de Bouze' and 'Gamay Fréaux' (two somatic variants of the white-fleshed cv. 'Gamay') through metabolic and transcript analysis to clarify whether these two somatic variants have the same anthocyanin accumulation pattern in the skin and pulp, and whether primary metabolites are also affected. The skin of the three cultivars and the pulp of 'Gamay de Bouze' begun to accumulate anthocyanins at the onset of berry ripening. However, the pulp of 'Gamay Fréaux' exhibited a distinct anthocyanin accumulation pattern, starting as early as fruit set with very low level of sugars. The highest level of anthocyanins was found in 'Gamay Fréaux' skin, followed by 'Gamay de Bouze' and 'Gamay'. Consistently, the transcript abundance of genes involved in anthocyanin biosynthesis were in line with the anthocyanin levels in the three cultivars. Despite no evident differences in pulp sugar content, the concentration of glucose and fructose in the skin of 'Gamay Fréaux' was only half of those in the skin of 'Gamay' and 'Gamay de Bouze' throughout all berry ripening, suggesting an uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. The study provides a comprehensive view of metabolic consequences in grape somatic variants and the three almost isogenic genotypes can serve as ideal reagents to further uncover the mechanisms underlying the linkage between sugar and anthocyanin accumulation.


Assuntos
Vitis , Antocianinas , Frutose , Frutas/genética , Regulação da Expressão Gênica de Plantas , Açúcares , Vitis/genética
3.
Plant Physiol Biochem ; 125: 255-261, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29477905

RESUMO

White-fruited mutants of Fragaria vesca, and one of F. x ananassa, were studied to determine the identity and quantity of major flavonols (FVLs), flavan-3-ols (FV3Ls), hydroxycinnamic acids (HCAs), and ellagic acid (EA)-derived compounds, by using HPLC-MS. The content of 22 compounds across the major groups were used to assess the possibility of unique mutations among the mutant gentoypes. Total HCAs were lower in the white than the red cultivars of both species, except for 2 white F. vesca cultivars. Total FVLs were comparable in white fruit of both species, although a red F. x ananassa had more than a red F. vesca. Total FV3Ls were higher in red than white cultivars of both species. Total EA-derived content was generally higher in white than in red F. vesca. Principal component analysis and a combined heatmap and hierarchical cluster analysis clearly discriminated among the five white F. vesca genotypes.


Assuntos
Fragaria/metabolismo , Genótipo , Mutação , Pigmentação/genética , Polifenóis/metabolismo , Ácidos Cumáricos/metabolismo , Ácido Elágico/metabolismo , Flavonoides/metabolismo , Fragaria/genética
4.
Food Res Int ; 98: 2-9, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28610728

RESUMO

Amino acid composition of the grape berry at harvest is important for wine making. The present study investigates the complex interplay between tissue, cultivar and light conditions that determine berry amino acid content. Twenty amino acids were assessed in the berry skin and pulp of two grape cultivars (Gamay Noir and Gamay Fréaux), grown under either light exposure or cluster shading conditions. In all samples, cluster shading significantly reduced most amino acids, except gamma-aminobutyric acid (GABA) and phenylalanine. However, the magnitude of the decrease was stronger in the skin (67.0% decrease) than in the pulp (30.4%) and stronger in cv. Gamay Noir (69.7%) than in Gamay Fréaux (30.7%). Cluster shading also significantly modified amino acid composition by decreasing the proline content while increasing the GABA content. These results are of oenological interest for shaping the amino acid composition of the must and improving wine quality.


Assuntos
Agricultura , Aminoácidos/análise , Escuridão , Frutas/química , Genótipo , Vitis/química , Vinho , Aminoácidos Básicos/análise , Diamino Aminoácidos/análise , Humanos , Especificidade da Espécie , Vitis/genética
5.
Front Plant Sci ; 7: 649, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242850

RESUMO

The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g., alcohol content in wine). Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, sugar metabolism, and water dilution. Therefore, inter-species comparison would help to identify common and/or species-specific modes of regulation in sugar accumulation. For this purpose, a process-based mathematical framework was used to compare soluble sugar accumulation in three fruits: grape, tomato, and peach. Representative datasets covering the time course of sugar accumulation during fruit development were collected. They encompassed 104 combinations of species (3), genotypes (30), and growing conditions (19 years and 16 nutrient and environmental treatments). At maturity, grape showed the highest soluble sugar concentrations (16.5-26.3 g/100 g FW), followed by peach (2.2 to 20 g/100 g FW) and tomato (1.4 to 5 g/100 g FW). Main processes determining soluble sugar concentration were decomposed into sugar importation, metabolism, and water dilution with the process-based analysis. Different regulation modes of soluble sugar concentration were then identified, showing either import-based, dilution-based, or import and dilution dual-based. Firstly, the higher soluble sugar concentration in grape than in tomato is a result of higher sugar importation. Secondly, the higher soluble sugar concentration in grape than in peach is due to a lower water dilution. The third mode of regulation is more complicated than the first two, with differences both in sugar importation and water dilution (grape vs. cherry tomato; cherry tomato vs. peach; peach vs. tomato). On the other hand, carbon utilization for synthesis of non-soluble sugar compounds (namely metabolism) was conserved among the three fruit species. These distinct modes appear to be quite species-specific, but the intensity of the effect may significantly vary depending on the genotype and management practices. These results provide novel insights into the drivers of differences in soluble sugar concentration among fleshy fruits.

6.
Planta ; 243(1): 23-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26335854

RESUMO

MAIN CONCLUSION: Light exclusion reduces the concentration and modifies the composition of grape anthocyanins, by altering the expression of genes involved in anthocyanin biosynthesis and transport, in a cultivar- and tissue-specific manner. Unlike most grapes, teinturier grapes accumulate anthocyanins both in skin and flesh. However, the concentration and composition of anthocyanins in both tissues differ, providing a valuable system to study tissue-specific regulation of anthocyanin synthesis. Furthermore, little is known about the mechanisms controlling the sensitivity of anthocyanin accumulation to light. Here, light was excluded from Gamay (white-fleshed) and Gamay Fréaux (teinturier mutant) berries throughout berry development. Under light-exposed conditions, the skin of Gamay Fréaux accumulated the highest level of anthocyanins, followed by the skin of Gamay, while the pulp of Gamay Fréaux had much lower anthocyanins than the skins. Network analysis revealed the same order on the number of significant correlations among metabolites and transcripts in the three colored tissues, indicating a higher connectivity that reflects a higher efficiency of the anthocyanin pathway. Compared to light conditions, light exclusion reduced the total amount of anthocyanins, most severely in the skin of Gamay and to a lesser extent in the flesh and skin of Gamay Fréaux. Coordinated decrease in the transcript abundance of structural, regulatory and transporter genes by light exclusion correlated with the reduced anthocyanin concentration in a cultivar- and tissue-specific manner. Moreover, light exclusion increased the ratio of dihydroxylated to trihydroxylated anthocyanins, in parallel with F3'H and F3'5'H transcript amounts. Sugars and ABA only play a limited role in the control of anthocyanin synthesis in the berries, in contrast with what has been described in cell suspensions. This study provides novel insights into the regulation of anthocyanin in wild type and teinturier cultivars.


Assuntos
Antocianinas/efeitos da radiação , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Vitis/efeitos da radiação , Antocianinas/análise , Antocianinas/biossíntese , Frutose/análise , Frutas/genética , Frutas/metabolismo , Glucose/análise , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Vitis/genética , Vitis/metabolismo
7.
BMC Plant Biol ; 15: 28, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644551

RESUMO

BACKGROUND: QTLs controlling individual sugars and acids (fructose, glucose, malic acid and tartaric acid) in grape berries have not yet been identified. The present study aimed to construct a high-density, high-quality genetic map of a winemaking grape cross with a complex parentage (V. vinifera × V. amurensis) × ((V. labrusca × V. riparia) × V. vinifera), using next-generation restriction site-associated DNA sequencing, and then to identify loci related to phenotypic variability over three years. RESULTS: In total, 1 826 SNP-based markers were developed. Of these, 621 markers were assembled into 19 linkage groups (LGs) for the maternal map, 696 for the paternal map, and 1 254 for the integrated map. Markers showed good linear agreement on most chromosomes between our genetic maps and the previously published V. vinifera reference sequence. However marker order was different in some chromosome regions, indicating both conservation and variation within the genome. Despite the identification of a range of QTLs controlling the traits of interest, these QTLs explained a relatively small percentage of the observed phenotypic variance. Although they exhibited a large degree of instability from year to year, QTLs were identified for all traits but tartaric acid and titratable acidity in the three years of the study; however only the QTLs for malic acid and ß ratio (tartaric acid-to-malic acid ratio) were stable in two years. QTLs related to sugars were located within ten LGs (01, 02, 03, 04, 07, 09, 11, 14, 17, 18), and those related to acids within three LGs (06, 13, 18). Overlapping QTLs in LG14 were observed for fructose, glucose and total sugar. Malic acid, total acid and ß ratio each had several QTLs in LG18, and malic acid also had a QTL in LG06. A set of 10 genes underlying these QTLs may be involved in determining the malic acid content of berries. CONCLUSION: The genetic map constructed in this study is potentially a high-density, high-quality map, which could be used for QTL detection, genome comparison, and sequence assembly. It may also serve to broaden our understanding of the grape genome.


Assuntos
Ácidos/metabolismo , Metabolismo dos Carboidratos , Genoma de Planta , Vitis/genética , China , Mapeamento Cromossômico , Frutas/genética , Frutas/metabolismo , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Locos de Características Quantitativas , Vitis/metabolismo
8.
Food Chem ; 172: 86-91, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25442527

RESUMO

Soluble sugar and malic acid contents in mature fruits of 364 apple accessions were quantified using high-performance liquid chromatography (HPLC). Fructose and sucrose represented the major components of soluble sugars in cultivated fruits, whilst fructose and glucose were the major items of sugars in wild fruits. Wild fruits were significantly more acidic than cultivated fruits, whilst the average concentration of total sugars and sweetness index were quite similar between cultivated and wild fruits. Thus, our study suggests that fruit acidity rather than sweetness is likely to have undergone selection during apple domestication. Additionally, malic acid content was positively correlated with glucose content and negatively correlated with sucrose content. This suggests that selection of fruit acidity must have an effect on the proportion of sugar components in apple fruits. Our study provides information that could be helpful for future apple breeding.


Assuntos
Carboidratos/análise , Malatos/análise , Malus/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Malus/crescimento & desenvolvimento
9.
Plant Genome ; 8(3): eplantgenome2015.03.0016, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33228269

RESUMO

A gene encoding aluminum-activated malate transporter (ALMT) was previously reported as a candidate for the Ma locus controlling acidity in apple (Malus × domestica Borkh.). In this study, we found that apple ALMT genes can be divided into three families and the Ma1 gene belongs to the ALMTII family. Duplication of ALMTII genes in apple is related to the polyploid origin of the apple genome. Divergence in expression has occurred between the Ma1 gene and its homologs in the ALMTII family and only the Ma1 gene is significantly associated with malic acid content. The Ma locus consists of two alleles, Ma1 and ma1. Ma1 resides in the tonoplast and its ectopic expression in yeast was found to increase the influx of malic acid into yeast cells significantly, suggesting it may function as a vacuolar malate channel. In contrast, ma1 encodes a truncated protein because of a single nucleotide substitution of G with A in the last exon. As this truncated protein resides within the cell membrane, it is deemed to be nonfunctional as a vacuolar malate channel. The frequency of the Ma1Ma1 genotype is very low in apple cultivars but is high in wild relatives, which suggests that apple domestication may be accompanied by selection for the Ma1 gene. In addition, variations in the malic acid content of mature fruits were also observed between accessions with the same genotype in the Ma locus. This suggests that the Ma gene is not the only genetic determinant of fruit acidity in apple.

10.
PLoS One ; 9(8): e105959, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25158067

RESUMO

Global gene expression was analyzed in the berry skin of two red grape cultivars, which can ('Jingyan') or cannot ('Jingxiu') synthesize anthocyanins after sunlight exclusion from fruit set until maturity. Gene transcripts responding to sunlight exclusion in 'Jingyan' were less complex than in 'Jingxiu'; 528 genes were induced and 383 repressed in the former, whereas 2655 genes were induced and 205 suppressed in 'Jingxiu'. They were regulated either in the same or opposing manner in the two cultivars, or in only one cultivar. In addition to VvUFGT and VvMYBA1, some candidate genes (e.g. AOMT, GST, and ANP) were identified which are probably involved in the differential responses of 'Jingxiu' and 'Jingyan' to sunlight exclusion. In addition, 26 MYB, 14 bHLH and 23 WD40 genes responded differently to sunlight exclusion in the two cultivars. Interestingly, all of the 189 genes classified as being relevant to ubiquitin-dependent protein degradation were down-regulated by sunlight exclusion in 'Jingxiu', but the majority (162) remained unchanged in 'Jingyan' berry skin. It would be of interest to determine the precise role of the ubiquitin pathway following sunlight exclusion, particularly the role of COP9 signalosome, cullins, RING-Box 1, and COP1-interacting proteins. Only a few genes in the light signal system were found to be regulated by sunlight exclusion in either or both cultivars. This study provides a valuable overview of the transcriptome changes and gives insight into the genetic background that may be responsible for sunlight-dependent versus -independent anthocyanin biosynthesis in berry skin.


Assuntos
Antocianinas/biossíntese , Frutas/metabolismo , Vitis/metabolismo , Vias Biossintéticas , Frutas/genética , Frutas/efeitos da radiação , Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Transdução de Sinais , Luz Solar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Ubiquitinação , Vitis/genética , Vitis/efeitos da radiação
11.
Food Chem ; 164: 242-50, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24996330

RESUMO

The effects of sunlight exclusion on the volatile profiles of grapes during different stages of berry development were investigated by placing clusters of grapes in special boxes. Terpenes and aldehydes were the main volatile compounds in the ripe 'Jingxiangyu' berries. Sunlight exclusion was found to change volatile profiles at any stage. Sunlight exclusion from berries significantly inhibited the synthesis and accumulation of terpenes, which contribute to the characteristic aroma of Muscat grapes. However, sunlight exclusion during berry formation and veraison promoted the accumulation of aldehydes, alcohols, and ketones during the ripening stage. These results may provide important information regarding the metabolism of volatile compounds in grapes.


Assuntos
Frutas/crescimento & desenvolvimento , Vitis/efeitos da radiação , Compostos Orgânicos Voláteis/química , Álcoois/química , Álcoois/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/efeitos da radiação , Luz Solar , Terpenos/química , Terpenos/metabolismo , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Compostos Orgânicos Voláteis/metabolismo
12.
J Exp Bot ; 65(16): 4543-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24285825

RESUMO

Grapevine (Vitis vinifera L.) is a non-climacteric fruit species used as table fruit, dried raisins, and for vinification (wines) and distillation (liquors). In recent years, our knowledge of the molecular basis of ripening regulation has improved. Water status, light conditions, and temperature may hasten, delay, or enhance ripening. Hormones seem to play a central role, as their concentrations change prior to and during ripening and in response to several environmental cues. The review summarizes recent data related to the molecular and hormonal control of grape berry development and ripening, with special emphasis on secondary metabolism and its response to the environment, and pinpoints some experimental limitations.


Assuntos
Frutas/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Meio Ambiente , Frutas/efeitos dos fármacos , Frutas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Vitis/efeitos dos fármacos , Vitis/metabolismo
13.
PLoS One ; 8(4): e61642, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637874

RESUMO

BACKGROUND: Resveratrol is an important stilbene that benefits human health. However, it is only distributed in a few species including grape and is very expensive. At present, grape has been an important source resveratrol. However, the details are scarce on resveratrol distribution in different Vitis species or cultivars. METHODOLOGY/PRINCIPAL FINDING: The composition and content of resveratrols were investigated by HPLC for assessing genotypic variation in berry skins and leaves of 75 grape cultivars, belonging to 3 species and 7 interspecific hybrids. Trans-resveratrol, cis-piceid and trans-piceid were detected in berry skins and leaves, but cis-resveratrol was not. Resveratrol content largely varied with genetic background as well as usage. In most cultivars, total resveratrol including the above three compounds was higher in berry skins than leaves. In berry skins of most cultivars and leaves of almost all cultivars, cis-piceid was the most abundant resveratrol; trans-resveratrol and trans-piceid were minor components. Some specific cultivars were found with extremely high levels of trans-resveratrol, cis- piceid, trans-piceid or total resveratrols in berry skins or leaves. In skins and leaves, rootstock cultivars had a higher content of total resveratrols, and the cultivated European type cultivars and their hybrids with V. labrusca had relatively low totals. There were no significant correlations of the amounts of total resveratrols or any individual resveratrol between berry skins and leaves. All 75 cultivars can be divided into four groups based on the composition of resveratrols and their concentration by principal component analysis. CONCLUSION: Resveratrol content of grape berries and leaves varied largely with their genetic background and usage. Rootstock cultivars had a higher content of total resveratrols than the other germplasm. Total resveratrols were lower in leaves than berry skins in most cultivars. Cis-piceid was the most abundant resveratrol in most cultivars, and trans-res and trans-pd were minor components.


Assuntos
Frutas/química , Folhas de Planta/química , Estilbenos/química , Vitis/química , Cromatografia Líquida de Alta Pressão , Frutas/metabolismo , Extratos Vegetais/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Resveratrol , Estilbenos/metabolismo , Vitis/metabolismo
14.
J Plant Physiol ; 170(8): 748-57, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23499453

RESUMO

The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots resolved in stained gels, the accumulation patterns of 96 spots differed significantly between sunlight-excluded berry skin and that of sunlight-exposed control berries. Seventy-two proteins, including 35 down-regulated and 37 up-regulated proteins, were identified and categorized. Proteins involved in photosynthesis and secondary metabolism, especially UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), the key step for anthocyanin biosynthesis in grape berry skin, were accumulated less in the absence of sunlight. Several isoforms of heat shock proteins were also down-regulated. The proteins that were over-accumulated in sunlight-excluded berry skin were more often related to energy production, glycolysis, the tricarboxylic-acid cycle, protein synthesis and biogenesis of cellular components. Their putative role is discussed in terms of their relevance to sunlight exclusion processes.


Assuntos
Antocianinas/metabolismo , Escuridão , Frutas/metabolismo , Proteoma , Vitis/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/biossíntese , Estações do Ano
15.
Food Chem ; 136(2): 643-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23122109

RESUMO

An orthogonal L(36) (6)(5) test design was applied to select the optimum conditions for extracting resveratrols from grape berry skins and leaves. Solvent choice was the most important factor in the extraction of resveratrols, and mixed methanol and ethyl acetate [50:50 (v/v)] had much higher extraction efficiency than the other five solvents tested. For extracting resveratrols, 1g of berry skins or leaf tissue extracted in 10 mL methanol and ethyl acetate [50:50 (v/v)] for 24h at 25°C in darkness was the optimized extraction condition. The optimized analytical method for HPLC was a multi-step gradient elution using acetonitrile and water. The optimized method was used to determine resveratrols among three different cultivars. The cultivar 'Zhi 168' had the highest total resveratrols in berry skins while 'Saint-Emilion' had the lowest resveratrols. The resveratrol content of 'Beta' was between that of 'Zhi 168' and 'Saint-Emilion'.


Assuntos
Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/análise , Estilbenos/análise , Vitis/química , Frutas/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Resveratrol
16.
BMC Plant Biol ; 12: 174, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23016701

RESUMO

BACKGROUND: Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. RESULTS: We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. CONCLUSION: The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs, antioxidant enzymes (i.e., ascorbate peroxidase), and galactinol synthase may be important to thermotolerance of grape. HSF30 may be a key regulator for heat stress and recovery, while HSF7 and HSF1 may only be specific to recovery. The identification of heat stress or recovery responsive genes in this study provides novel insights into the molecular basis for heat tolerance in grape leaves.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Folhas de Planta/genética , Vitis/genética , Análise por Conglomerados , Sondas de DNA/metabolismo , Regulação para Baixo/genética , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/genética
17.
Anal Chim Acta ; 724: 127-35, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22483220

RESUMO

Flavonoid composition and concentration were investigated in 12 different tissues of 'Ti-1' lotus (Nelumbo nucifera) by high performance liquid chromatography equipped with photodiode array detection tandem electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS(n)). A total of 20 flavonoids belonging to six groups (myricetin, quercetin, kaempferol, isohamnetin, diosmetin derivatives) were separated and identified. Myricetin 3-O-galactoside, myricetin 3-O-glucuronide, isorhamnetin 3-O-glucuronide and free aglycone diometin (3',5,7-trihydroxy-4'-methoxyflavone) were first reported in lotus. Flavonoid composition varied largely with tissue type, and diverse compounds (5-15) were found in leaf and flower stalks, flower pistils, seed coats and embryos. Flower tissues including flower petals, stamens, pistils, and, especially, reproductive tissue fruit coats had more flavonoid compounds (15-17) than leaves (12), while no flavonoids were detectable in seed kernels. The flavonoid content of seed embryos was high, 730.95 mg 100g(-1) DW (dry weight). As regards the other tissues, mature leaf pulp (771.79 mg 100 g(-1) FW (fresh weight)) and young leaves (650.67 mg 100 g(-1) FW) had higher total flavonoid amount than flower stamens (359.45 mg 100 g(-1) FW) and flower petals (342.97 mg 100g(-1) FW), while leaf stalks, flower stalks and seed coats had much less total flavonoid (less than 40 mg 100 g(-1) FW).


Assuntos
Flavonoides/análise , Nelumbo/química , Cromatografia Líquida de Alta Pressão , Flavonoides/isolamento & purificação , Flores/química , Frutas/química , Especificidade de Órgãos , Folhas de Planta/química , Sementes/química , Espectrometria de Massas por Ionização por Electrospray
18.
J Chromatogr A ; 1227: 145-53, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22265782

RESUMO

The extraction protocol of flavonoids from lotus (Nelumbo nucifera) leaves was optimized through an orthogonal design. The solvent was the most important factor comparing solvent, solvent:tissue ratio, extraction time, and temperature. The highest yield of flavonoids was achieved with 70% methanol-water and a solvent:tissue ratio of 30:1 at 4 °C for 36 h. The optimized analytical method for HPLC was a multi-step gradient elution using 0.5% formic acid (A) and CH3CN containing 0.1% formic acid (B), at a flow rate of 0.6 mL/min. Using this optimized method, thirteen flavonoids were simultaneously separated and identified by high performance liquid chromatography coupled with photodiode array detection/electrospray ionization mass spectrometry (HPLC/DAD/ESI-MS(n)). Five of the bioactive compounds are reported in lotus leaves for the first time. The flavonoid content of the leaves of three representative cultivars was assessed under the optimized extraction and HPLC analytical conditions, and the seed-producing cultivar 'Baijianlian' had the highest flavonoid content compared with rhizome-producing 'Zhimahuoulian' and wild floral cultivar 'Honglian'.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Nelumbo/química , Espectrometria de Massas em Tandem/métodos , Modelos Lineares , Metanol , Folhas de Planta/química , Reprodutibilidade dos Testes , Água
19.
Funct Plant Biol ; 39(6): 462-470, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480797

RESUMO

SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14) catalyses the interconversion of polyols and ketoses (e.g. sorbitol ⟷ fructose). Using two independent Arabidopsis thaliana (L.) Heynh. sdh knockout mutants, we show that SDH (At5g51970) plays a primary role in sorbitol metabolism as well as an unexpected role in ribitol metabolism. Sorbitol content increased in both wild-type (WT) and mutant plant leaves during drought stress, but mutants showed a dramatically different phenotype, dying even if rewatered. The lack of functional SDH in mutant plants was accompanied by accumulation of foliar sorbitol and at least 10-fold more ribitol, neither of which decreased in mutant plants after rewatering. In addition, mutant plants were uniquely sensitive to ribitol in a concentration-dependent manner, which either prevented them from completing seed germination or inhibited seedling development, effects not observed with other polyols or with ribitol-treated WT plants. Ribitol catabolism may occur solely through SDH in A. thaliana, though at only 30% the rate of that for sorbitol. The results indicate a role for SDH in metabolism of sorbitol to fructose and in ribitol conversion to ribulose in A. thaliana during recovery from drought stress.

20.
J Food Sci ; 76(3): C490-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21535819

RESUMO

Berry skin color OIV index, anthocyanin composition, and content of 78 grape cultivars were surveyed using a CIELAB system and high-performance liquid chromatography (HPLC)-mass spectrometry (MS) coupled with photodiode array detection. There were high correlations between L*, b*, and color, while a* was not a representative parameter. L* and b* values declined as berry skin color OIV became darker, and a* increased as berry skin color OIV became darker in pink and red grape cultivars only. The composition and content of anthocyanins varied widely among the cultivars. Total anthocyanins and types of anthocyanins were significantly correlated with color OIV parameters. Through multiple linear regression analysis, cyanidin derivatives had a positive effect on values of L* and b*. Delphinidin derivatives had positive effects on the value of a*. The CIELAB system gave good results for differentiation of grape berry skin color OIV.


Assuntos
Antocianinas/análise , Frutas/química , Pigmentação , Epiderme Vegetal/química , Vitis/química , Acilação , Antocianinas/química , Cromatografia Líquida de Alta Pressão , Glicosídeos/análise , Glicosídeos/química , Modelos Lineares , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Vitis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...